Exercise 31

Solve the telegraph equation in Exercise 29 with $V(x, 0)=0=V_{t}(x, 0)$ for the Heaviside distortionless cable ($\frac{R}{L}=\frac{G}{C}=$ const. $=k$) with the boundary data $V(0, t)=V_{0} f(t)$ and $V(x, t) \rightarrow 0$ as $x \rightarrow \infty$ for $t>0$, where V_{0} is constant and $f(t)$ is an arbitrary function of t. Explain the physical significance of the solution.

Solution

The telegraph equation in Exercise 29 is

$$
L C V_{t t}-V_{x x}+(L G+R C) V_{t}+R G V=0 .
$$

Divide both sides by $L C$.

$$
V_{t t}-\frac{1}{L C} V_{x x}+\left(\frac{G}{C}+\frac{R}{L}\right) V_{t}+\frac{R G}{L C} V=0
$$

Since

$$
\frac{R}{L}=\frac{G}{C}=k \quad \text { and } \quad c^{2}=\frac{1}{L C},
$$

the equation simplifies to

$$
V_{t t}-c^{2} V_{x x}+2 k V_{t}+k^{2} V=0
$$

Because we're given two initial conditions and $t>0$, this PDE can be solved using the Laplace transform. It is defined as

$$
\mathcal{L}\{V(x, t)\}=\bar{V}(x, s)=\int_{0}^{t} e^{-s t} V(x, t) d t
$$

which means the derivatives of V with respect to x and t transform as follows.

$$
\begin{aligned}
\mathcal{L}\left\{\frac{\partial^{n} V}{\partial x^{n}}\right\} & =\frac{d^{n} \bar{V}}{d x^{n}} \\
\mathcal{L}\left\{\frac{\partial V}{\partial t}\right\} & =s \bar{V}(x, s)-V(x, 0) \\
\mathcal{L}\left\{\frac{\partial^{2} V}{\partial t^{2}}\right\} & =s^{2} \bar{V}(x, s)-s V(x, 0)-V_{t}(x, 0)
\end{aligned}
$$

Take the Laplace transform of both sides of the PDE.

$$
\mathcal{L}\left\{V_{t t}-c^{2} V_{x x}+2 k V_{t}+k^{2} V\right\}=\mathcal{L}\{0\}
$$

The Laplace transform is a linear operator.

$$
\mathcal{L}\left\{V_{t t}\right\}-c^{2} \mathcal{L}\left\{V_{x x}\right\}+2 k \mathcal{L}\left\{V_{t}\right\}+k^{2} \mathcal{L}\{V\}=0
$$

Transform the derivatives with the relations above.

$$
s^{2} \bar{V}-s V(x, 0)-V_{t}(x, 0)-c^{2} \frac{d^{2} \bar{V}}{d x^{2}}+2 k[s \bar{V}-V(x, 0)]+k^{2} \bar{V}=0
$$

Plug in the initial conditions, $V(x, 0)=0$ and $V_{t}(x, 0)=0$, and factor \bar{V}.

$$
c^{2} \frac{d^{2} \bar{V}}{d x^{2}}=\left(s^{2}+2 k s+k^{2}\right) \bar{V}
$$

Divide both sides by c^{2} and recognize that the term multiplying \bar{V} is a perfect square.

$$
\frac{d^{2} \bar{V}}{d x^{2}}=\frac{(s+k)^{2}}{c^{2}} \bar{V}
$$

The PDE has thus been reduced to an ODE whose solution can be written in terms of exponential functions.

$$
\bar{V}(x, s)=A(s) e^{\frac{s+k}{c} x}+B(s) e^{-\frac{s+k}{c} x}
$$

In order to satisfy the condition that $V(x, t) \rightarrow 0$ as $x \rightarrow \infty$, we require that $A(s)=0$.

$$
\bar{V}(x, s)=B(s) e^{-\frac{s+k}{c} x}
$$

To determine $B(s)$, we have to use the boundary condition at $x=0, V(0, t)=V_{0} f(t)$. Take the Laplace transform of both sides of it.

$$
\begin{aligned}
\mathcal{L}\{V(0, t)\} & =\mathcal{L}\left\{V_{0} f(t)\right\} \\
\bar{V}(0, s) & =V_{0} F(s)
\end{aligned}
$$

Plug in $x=0$ into the formula for \bar{V} and use the boundary condition.

$$
\bar{V}(0, s)=B(s)=V_{0} F(s)
$$

Thus,

$$
\bar{V}(x, s)=V_{0} F(s) e^{-\frac{s+k}{c} x}
$$

Now that we have $\bar{V}(x, s)$ we can obtain $V(x, t)$ by taking the inverse Laplace transform of it.

$$
\begin{aligned}
V(x, t)=\mathcal{L}^{-1}\{\bar{V}(x, s)\} & =\mathcal{L}^{-1}\left\{V_{0} F(s) e^{-\frac{s+k}{c} x}\right\} \\
& =\mathcal{L}^{-1}\left\{V_{0} F(s) e^{-\frac{s}{c} x} e^{-\frac{k}{c} x}\right\} \\
& =V_{0} e^{-\frac{k}{c} x} \mathcal{L}^{-1}\left\{F(s) e^{-\frac{s}{c} x}\right\}
\end{aligned}
$$

Here we make use of the fact that

$$
\mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\}=H(t-a) f(t-a) .
$$

Therefore,

$$
V(x, t)=V_{0} e^{-\frac{k}{c} x} f\left(t-\frac{x}{c}\right) H\left(t-\frac{x}{c}\right),
$$

where

$$
c^{2}=\frac{1}{L C}
$$

