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Exercise 31

Solve the telegraph equation in Exercise 29 with V (x, 0) = 0 = Vt(x, 0) for the Heaviside
distortionless cable (RL = G

C = const. = k) with the boundary data V (0, t) = V0f(t) and
V (x, t)→ 0 as x→∞ for t > 0, where V0 is constant and f(t) is an arbitrary function of t.
Explain the physical significance of the solution.

Solution

The telegraph equation in Exercise 29 is

LCVtt − Vxx + (LG + RC)Vt + RGV = 0.

Divide both sides by LC.

Vtt −
1

LC
Vxx +

(
G

C
+

R

L

)
Vt +

RG

LC
V = 0

Since
R

L
=

G

C
= k and c2 =

1

LC
,

the equation simplifies to
Vtt − c2Vxx + 2kVt + k2V = 0.

Because we’re given two initial conditions and t > 0, this PDE can be solved using the Laplace
transform. It is defined as

L{V (x, t)} = V (x, s) =

ˆ t

0
e−stV (x, t) dt,

which means the derivatives of V with respect to x and t transform as follows.

L
{
∂nV

∂xn

}
=

dnV

dxn

L
{
∂V

∂t

}
= sV (x, s)− V (x, 0)

L
{
∂2V

∂t2

}
= s2V (x, s)− sV (x, 0)− Vt(x, 0)

Take the Laplace transform of both sides of the PDE.

L{Vtt − c2Vxx + 2kVt + k2V } = L{0}

The Laplace transform is a linear operator.

L{Vtt} − c2L{Vxx}+ 2kL{Vt}+ k2L{V } = 0

Transform the derivatives with the relations above.

s2V − sV (x, 0)− Vt(x, 0)− c2
d2V

dx2
+ 2k[sV − V (x, 0)] + k2V = 0
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Plug in the initial conditions, V (x, 0) = 0 and Vt(x, 0) = 0, and factor V .

c2
d2V

dx2
= (s2 + 2ks + k2)V

Divide both sides by c2 and recognize that the term multiplying V is a perfect square.

d2V

dx2
=

(s + k)2

c2
V

The PDE has thus been reduced to an ODE whose solution can be written in terms of
exponential functions.

V (x, s) = A(s)e
s+k
c

x + B(s)e−
s+k
c

x

In order to satisfy the condition that V (x, t)→ 0 as x→∞, we require that A(s) = 0.

V (x, s) = B(s)e−
s+k
c

x

To determine B(s), we have to use the boundary condition at x = 0, V (0, t) = V0f(t). Take the
Laplace transform of both sides of it.

L{V (0, t)} = L{V0f(t)}
V (0, s) = V0F (s)

Plug in x = 0 into the formula for V and use the boundary condition.

V (0, s) = B(s) = V0F (s)

Thus,

V (x, s) = V0F (s)e−
s+k
c

x.

Now that we have V (x, s) we can obtain V (x, t) by taking the inverse Laplace transform of it.

V (x, t) = L−1{V (x, s)} = L−1
{
V0F (s)e−

s+k
c

x
}

= L−1
{
V0F (s)e−

s
c
xe−

k
c
x
}

= V0e
− k

c
xL−1

{
F (s)e−

s
c
x
}

Here we make use of the fact that

L−1
{
e−asF (s)

}
= H(t− a)f(t− a).

Therefore,

V (x, t) = V0e
− k

c
xf
(
t− x

c

)
H
(
t− x

c

)
,

where

c2 =
1

LC
.
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